Growth potentials of CCR5-tropic/CXCR4-tropic HIV-1mt clones in macaque cells

نویسندگان

  • Naoya Doi
  • Ayaka Okubo
  • Mizumo Yamane
  • Yosuke Sakai
  • Akio Adachi
  • Masako Nomaguchi
چکیده

Human immunodeficiency virus type 1 (HIV-1) is strictly adapted to humans, and cause AIDS only in humans. Consequently, no experimental animals susceptible to HIV-1 and suitable for the AIDS model study are available to date (Nomaguchi et al., 2008, 2011). To overcome this issue, viruses genetically related to HIV-1 have been challenged into macaque monkeys to mimic the natural HIV-1 infection. Viruses used for these experiments are simian immunodeficiency viruses (SIVs), SIVs chimeric with parts of HIV-1 sequences (SHIVs), and macaque tropic HIV-1 derivatives carrying a small portion of SIV genome (HIV-1mt clones). Because viruses of the SHIV and HIV1mt groups carry HIV-1 genes/sequences, their scientific/medical significance and impact are evident. Although some SHIVs indeed induce AIDS in macaques, accumulating evidences have demonstrated that the genuine CCR5-tropism of input viruses is prerequisite for superimposing the experimental outcome on the natural disease progression in humans (Feinberg and Moore, 2002; Margolis and Shattock, 2006). Therefore, a number of CCR5-tropic SHIVs currently have been generated and utilized for in vivo macaque experiments (Hsu et al., 2003; Humbert et al., 2008; Nishimura et al., 2010; Fujita et al., 2012). Recently, prototype HIV-1mt clones, CXCR4-tropic NL-DT5R, and dual-tropic (CXCR4and CCR5-tropic) stHIV-1, have been generated by us (Kamada et al., 2006) and others (Hatziioannou et al., 2006), respectively. We selected three distinct Env sequences and made three proviral constructs in the backbone of the NL-DT5R genome to obtain CCR5tropic/dual-tropic viruses (Figure 1A), based on the published results (Hsu et al., 2003; Hatziioannou et al., 2006; Matsuda et al., 2010; Nishimura et al., 2010). Of the three clones constructed, while NL-DT562 grew in a cynomolgus macaeque cell line HSC-F (Akari et al., 1996; Fujita et al., 2003), the other two viruses designated NL-DT589 and NL-DT5AD did not (Doi et al., 2010; our unpublished observations). The replication efficiency in HSC-F cells of NL-DT562 was much lower than that of the parental virus NL-DT5R (Doi et al., 2010). When examined in CD8+ cell-depleted pig-tailed macaque peripheral blood mononuclear cells (PBMCs), NL-DT5AD was found to be replication-competent in addition to NL-DT562 (Igarashi and Adachi, unpublished results). However, NL-DT5AD grew more poorly than NL-DT562, and NL-DT562 itself propagated much more inefficiently again than NL-DT5R in these PBMCs. Of note, NL-DT562 was confirmed to use CCR5 for cell entry (our unpublished data). To improve the replication ability of NL-DT562, we extensively modified its genome by adaptation to macaque cells and also by in vitro mutagenesis (Nomaguchi et al., 2008, 2011, 2013a,b; Nomaguchi et al., submitted). As a result, the same mutations were introduced into the corresponding genomic regions of NL-DT5R and NL-DT562 encoding Gag-capsid, Pol-integrase, and Vpu-transmembrane domain. Numerous growth-enhancing adaptive mutations were found to separately occur in the Env of NL-DT562, but only one in the Env of NL-DT5R (Nomaguchi et al., 2013b). Since the enhancement of virus growth by these mutations is strictly Env sequence-dependent (Nomaguchi et al., 2013b), only a single best mutation for viral replication was introduced into the env gene of each clone. As shown in Figure 1B, the final version of CCR5-tropic virus currently constructed (MN5/LSDQgtu in Figure 1A) surely grew extremely better than NL-DT562 in a rhesus macaque cell line M1.3S (Doi et al., 2011), but more poorly relative to MN4/LSDQgtu (Nomaguchi et al., submitted) (Figure 1A), a CXCR4-tropic virus derived from NL-DT5R (a virus corresponding to MN5/LSDQgtu). Taken all together, we are unable yet to have a CCR5-tropic HIV-1mt clone that grows better or equally well in macaque cells relative to CXCR4-tropic MN4/LSDQgtu. Virological and molecular basis for this negative result is presently unknown, but it is certain that the Env sequence is important for viral growth potentials. Extensive search for appropriate Env sequences to confer CCR5-tropism and high replication-ability on HIV-1mt clones is required for our final purpose, i.e., the generation of proviral clones virologically similar to viruses of the SIVmac group that are pathogenic for macaques. In this regard, it is tempting to use “intracellular homologous recombination” as a measure to readily generate recombinant HIV-1 clones (Fujita et al., 2012). Despite the every effort of researchers, so far, no appreciable disease was induced in pig-tailed and cynomolgus macaques infected with various HIV-1mt clones (Igarashi et al., 2007; Hatziioannou et al., 2009; Saito et al., 2011, 2013; Thippeshappa et al., 2011). Although the rhesus macaque is thought to be the best macaque species for infection experiments of this kind from various virological and primatological points of view, no attempts to infect it with HIV-1mt clones have been made to date, probably due to its highly resistant nature to the viruses. Common characteristics of the non-morbifical infections as described above are low viral loads relative to those in pathogenetic infections with SIV/SHIV/HIV-1 and no apparent viral set points in the course of infection. Without initial burst of viruses in hosts to guarantee viral amount and diversity enough for persistent infection, viruses may not survive in individuals/populations. Further improvement

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhesus M1.3S Cells Suitable for Biological Evaluation of Macaque-Tropic HIV/SIV Clones

Human immunodeficiency virus type 1 (HIV-1) is the causative virus of human acquired immunodeficiency syndrome (AIDS). Due to the lack of appropriate animal models, basic studies on HIV-1 replication, pathogenesis, and evolution, have been limited to cellular and molecular levels (Nomaguchi et al., 2008). Moreover, applied clinical studies in vivo also have been forced to use simian immunodefic...

متن کامل

Complete Genome Sequences of Human Immunodeficiency Type 1 Viruses Genetically Engineered To Be Tropic for Rhesus Macaques

We have constructed two human immunodeficiency type 1 (HIV-1) derivatives, CXCR4 tropic and CCR5 tropic, that replicate in rhesus macaques. They are genetically engineered to be resistant to macaque restriction factors against HIV-1, including TRIM5α, APOBEC3, and tetherin proteins. The two HIV-1 variants described here are fundamental clones aiming for rhesus infection studies of HIV-1.

متن کامل

Generation of rhesus macaque-tropic HIV-1 clones that are resistant to major anti-HIV-1 restriction factors.

Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives s...

متن کامل

T cell-tropic HIV gp120 mediates CD4 and CD8 cell chemotaxis through CXCR4 independent of CD4: implications for HIV pathogenesis.

HIV entry is determined by one or more chemokine receptors. T cell-tropic viruses bind CXCR4, whereas macrophage-tropic viruses use CCR5 and other CCRs. Infection with CXCR4 and CCR5-tropic HIV requires initial binding to CD4, and chemotaxis induced by the CCR5-tropic envelope has been reported to be strictly dependent on CD4 binding. We demonstrate that, in contrast to CD4-dependent gp120 sign...

متن کامل

Defining the fitness of HIV-1 isolates with dual/mixed co-receptor usage

BACKGROUND CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. METHODS Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013